
21 
 

 

 

Int. Journal of Economics and Management 16 (1): 21-43 (2022) 

 

IJEM 
International Journal of Economics and Management 

 

Journal homepage: http://www.ijem.upm.edu.my 

 

 

The Role of Industrial Structure Adjustment in China's Low-Carbon Eco-

Efficiency: A Super-Slack-Based Measure (Super-SBM) Approach 

 

TAO MIAOMIAOa, GOH LIM THYEa* AND GOVINDARAJU V.G. R CHANDRANb  

 

 
 

aDepartment of Economics and Applied Statistics, Faculty of Business and Economics, Universiti 

Malaya, Malaysia 
bDepartment of Development Studies, Faculty of Business and Economics, Universiti Malaya, 

Malaysia 

 
 

ABSTRACT 

 
Drawing on panel data of China's 30 selected provinces from 2005 to 2017, this paper 

examined the effects of industrial structure adjustment (IA) effects on low-carbon eco-

efficiency (LCE). We utilised the Super-slack-based Measure (Super-SBM) to evaluate 

China's LCE and the Industrial structure advancement (ISA) and rationalisation (ISR), as an 

integrated part of IA, were selected to conduct the effect's examination adopting the Spatial 

Durbin Model (SDM). Our results indicate that the proposed Super-SBM model could 

effectively rank the SBM-efficiency provinces. However, the regional economic 

development did not follow a low-carbon pattern and LCE performance among regions and 

provinces was extremely uncoordinated, thus, forming a significant spatial distribution 

pattern. In addition, the SDM results proved that IA was a crucial channel for China to 

develop a low-carbon economy. In contrast, the comparative analysis showed that ISR could 

be regarded as an essential pathway for most provinces to sustain LCE growth compared 

with ISA. 
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INTRODUCTION  

 

According to the National Bureau of Statistics of China (NBSC, 2020), China's GDP has multiplied by more 

than 170 times since the founding of the People's Republic of China. In 2010, China surpassed Japan to become 

the second-largest economy globally, known as the ''China miracle''. However, China's past extensive economic 

development pattern, characterised by a massive labour, resources and capital investment, brought with it an 

oversupply of primary products but a shortage of high-end products. However, the relationship between low-

quality supply and high-quality demands continues to escalate, resulting in increasing strains on China's 

sustainable economic development (Liu et al., 2020). Moreover, China has become the world's largest energy 

consumer (Du et al., 2011) and the most significant carbon dioxide (CO2) emitter (Gregg et al., 2008). 

Specifically, China accounted for one-quarter of the world's total CO2 emissions in 2011 (Choi et al., 2012) and 

devoured almost half of all coal produced in 2012 (Wang et al., 2013). It made up 24% of the world's energy 

consumption, accounting for approximately 34% of global energy consumption growth (BP, 2019). Greenhouse 

gas emissions (GGE), especially CO2 emissions, are generally accepted as one of the leading causes of climate 

change (Li et al., 2019). 

Given that climate change will cause a series of profound influences on social and economic 

development, the associated risk will be equivalent to 5-20% of global GDP each year (Stern Report, 2006). 

China has introduced some initiatives which are targeted to prompt energy conservation and mitigate CO2 

emissions. For instance, in the National 12th Five-Year Plan (2011-2015) introduced many carbon and energy 

reduction targets by 2015, with 2010 as the base year, such as decreasing the carbon intensity by 17% and 

reducing energy intensity by 16% (SCPRC, 2011). Moreover, the ''green development'' proposed by the central 

government in the National 13th Five-Year Plan (2016-2020) became a principal guiding ideology in the crucial 

area of economic construction and social development. In the 75th United Nations General Assembly held in 

September 2020, China's President, Xi Jinping, announced that ''China will struggle to reach a CO2 emissions 

peak before 2030 and achieve carbon neutrality before 2060''. Transforming its economic development model 

and cultivating a low-carbon economy (LE) (Wang and Chang, 2014; Liu et al., 2013) is vital for China to fulfill 

these goals. 

The concept of a LE was first proposed in a British Government White Paper (DTI, 2003), which 

addressed that a LE would maximise economic output through lower resource consumption, thus, leading to 

lower GGE. At the same time, the policies related to a LE have also been introduced in many countries, such 

as; Japan, the United States and Germany (Cherry et al., 2014; Shimada et al., 2007). The international 

community has begun to arrive at a consensus on combating climate change and developing the LE. Special 

attention has been attached to the mitigation of CO2 emissions and energy conservation. For example, Jiang et 

al. (2010) analysed China's energy development under the LE and its introduction of a set of energy development 

strategies. Liu and Gallagher (2010) developed a CCS (Carbon Capture and Storage) roadmap for China. Their 

results showed that coal gasification or polygeneration could be nearly unbeatable when combined with CCS 

for China's low-carbon future. Liu et al. (2013) put forward a five-pronged strategy to set China onto a low-

carbon path after systematically analysing the significant bottlenecks of China's transition to a LE. To promote 

a LE, it is also essential for management to fully understand China's past low-carbon eco-efficiency (LCE). 

An LCE could significantly reduce ecological deterioration to a minimum while maximizing total factor 

productivity (TFP). Generally, the industrial structure of developed economies is well advanced. Thus, the 

developed eco-efficient countries are more efficient than emerging markets at the lower end of the global 

industrial value chain. An economy can enhance its efficiency and capability in energy utilisation and reduce 

pollutant emissions by industrial adjustment (IA). Environmentally cleaner production methods by industries, 

especially heavy industries would foster economic growth, create a better environment, and increase economic 

gains in social welfare. Thus, pushing forward IA is an essential way for China to achieve a higher LCE. 

However, the dilemma of choosing economic growth or environmental protection remains a pressing issue 

faced by emerging markets. Countries worldwide constantly rearticulate their economies, especially their 

industrial structure, to achieve sustainable development (Buzdugan and Tuselmann, 2018; Fessehaie and Morris, 

2018; Yashodha et al., 2018). China has also significantly restructured its industrial structure. Specifically, the 

contributions of three sectors, namely, the agriculture, industrial and tertiary sectors, have transformed from 

27.7%, 47.7%, and 24.6% in 1978 to 7.1%, 39.0%, and 53.9% in 2019, respectively. The  
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tertiary industry's contribution has increased monotonically since 1978 and exceeded 50% for the first time in 

2015 (NBSC, 2020). China's industrial structure adjustment (IA) is consistent with the country's general 

industrial structure pattern, evolving from ''primary, secondary, tertiary''; ''secondary, tertiary, primary'' to 

''tertiary, secondary, primary'' industries. 

China's rapid industrialisation has brought about sizable economic gains. At the same time, 

environmental problems, such as ecological deterioration and haze pollution, have arisen, which have harmed 

people's health and exacerbated ecological degradation, thereby curbing long-term inclusive economic 

development (Shi et al., 2017; Chen et al., 2018). Gryshova et al. (2020) highlighted that a progressive industrial 

structure promoted sustainable economic development and improved the population's quality of life. 

Nevertheless, the current research has not yet made an in-depth exploration of the effects of IA on LCE. 

Moreover, the pioneering research only used the percentage of capital to labour (He and Wang, 2012; Cole and 

Elliott, 2003) or the ratio of manufacturing industry to the GDP (Cole, 2000) to measure IA. Unfortunately, 

these methods do not truly reflect the real essence of IA, resulting in biased estimation. This situation is because 

capital might not be utilised in polluting industrial sectors, the manufacturing industry might not necessarily be 

clean. In contrast, the clean manufacturing industry might not be eco-efficient. Therefore, it is of great 

importance to probe into the underlying impacts of IA on LCE. 

Data Envelopment Analysis (DEA), which is a nonparametric analysis approach, was developed by 

Mardani et al. (1978) to estimate the relative efficiencies of decision- making units (DMUs). The model has 

been widely adopted to assess eco-efficiency and the efficiency of CO2 emissions because it incorporates both 

environmental and economic indicators into multiple inputs and outputs analyses simultaneously (Guo et al., 

2011). For example, using the DEA model, Lee and Lee (2009) analysed the building energy performance in 

Taiwan Province by selecting 47 government office buildings. Lu et al. (2013) studied CO2 emissions efficiency 

(where CO2 emissions acted as an undesirable output) in OECD countries from 2005 to 2007 by performing a 

hybrid DEA model. The results demonstrated that the countries' efficiency from 2005 to 2007 presented 

volatility after controlling for CO2 emissions, suggesting that CO2 emissions were essential in evaluating 

regional LCE performance. 

What is more, the DEA model does not require additional assumptions (i.e., functional form 

postulations), and it can avoid man-made weighting errors (Song et al., 2012). It should be noted that undesirable 

outputs (where CO2 emissions are a typical example) as a by-product in the actual production process (i.e., coal-

based production activities) are inevitable. Therefore, the core of the DEA model lies in maximising desirable 

outputs and lowering energy inputs (i.e., coal) while reducing undesirable outputs. However, the traditional 

DEA model (i.e., the CCR-DEA model) is not feasible and accurate to measure LCE when incorporating CO2 

emissions. 

Subsequently, the slack-based measure (SBM) model, which was extended by Tone (2001) could be used 

to treat undesirable outputs, where the model takes the slackness problems of inputs and outputs caused by the 

radical and angular choices into consideration (Song et al., 2012). Moreover, this model can effectively address 

the potential issues of input excess and output shortfall in eco-efficiency measurement. As for studies concerning 

China, employing the non-radical DEA model, Choi et al. (2012) estimated the potential reductions and 

efficiency of CO2 emission and estimated the marginal decrease in CO2 emissions. Adopting 28 provinces in 

China, Song et al. (2013a) calculated the environmental efficiency from 1998 to 2009. They then compared the 

results estimated by the SBM model with the classic CCR-DEA model. The authors also proved that the results 

of the undesirable outputs of the SBM model were more reliable. Scholars have also included other undesirable 

variables (see Liang et al., 2021; Zhou et al., 2018; Liu and Dong, 2021; Meng and Qu, 2022) when 

implementing the undesirable outputs SBM model. However, it is not convenient to effectively rank the SBM-

efficient DMUs, since the efficiency values of DMUs estimated by the undesirable outputs SBM model may be 

simultaneously equal to 1. 

Therefore, the Super-SBM model with undesirable outputs (incorporating CO2 emissions) was adopted 

to analyse China's regional and provincial LCE performance across its 30 provinces from the temporal and 

spatial perspectives. Further, we believed that IA played a crucial role in stimulating LCE. Hence, the Spatial 

Durbin Model was performed to conduct the regression analysis. The relevant measures for improving LCE in 

China were derived. The remainder of this paper is structured as follows: Section 2 introduces the methodology 

to be used. Section 3 discusses the variable's selection, data sources, descriptive statistics, and  
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the necessary testing undertaken. The empirical results and related analysis are presented in Section 4, while 

Section 5 outlines the research conclusions. 

 

 

RESEARCH METHODOLOGY 

 

Super-SBM model with undesirable output 

This research implemented a Super-SBM model incorporating undesirable output based on the SBM-DEA 

framework (Tone, 2001, 2002, 2004). Following Chang et al. (2013), it is asumed that technologies with less 

undesirable and more desirable outputs should be considered efficient. Suppose that the LCE production system 

has N MDUs with three dimensions: inputs, desirable and undesirable outputs. Each province invests m input 

factors to produce s1 and s2 desirable and undesirable outputs, respectively. X, Yd and Yud were used to denote 

the inputs, desirable outputs and CO2 emissions. The matrices X, Yd and Yud as X = [xij] = [x1, . . . , xn] ∈ R
m×n, 

Yd = [yij] = [y1, . . . , yn] ∈ R
s1×n, and Yud = [y1

ud, . . . , y1
ud] ∈ Rs2×n. were specified. The production possibility 

set (PPS) can be expressed as follows: 

 

p(x) = {(x, yd, yud)|x produce (x, yd, yud), x ≥ Xθ, yd ≥ ydθ, yud ≥ yudθ, θ ≥ 0} (1) 

 

where λ expresses the non-negative intensity vector, meaning that the definition above corresponds to the 

constant returns-to-scale (CRS) condition. 

Based on this PPS, and referring to Tone (2004), the SBM model treating undesirable outputs is specified 

as follows: 

 

ρ = min

(

 
 1 −

1
m
∑

si
−

xi0
m
i=1

1 +
1

s1 + s2
(∑

yr
d

yr0
d

s1
r=1 + ∑

yt
ud

yt0
ud

s2
t=1 )

)

 
 

subject to 

{
 
 

 
  x0 = Xθ + s

−

y0
d = Ydθ − sd

y0
ud = Yudθ + sud

s− ≥ 0, sd ≥ 0, sud ≥ 0, θ ≥ 0

 (2) 

 

where the vector sd is the slack in inputs, whereas s− and sud denotes the excesses of inputs and undesirable 

outputs, respectively. The subscript o denotes a DMU whose efficiency is being estimated. The interval of the 

objective function value of ρ is [0,1], which is the efficiency level of the DMUs. Precisely, the DMUs are 

regarded as SDM-efficiency when meeting the conditions of ρ = 1 and s− = sd = sud = 0. If ρ < 1, indicating 

that the DMUs are inefficient, thus, both inputs and outputs need to be improved. Adopting the Charnes-Cooper 

transformation, as suggested by Tone (2001), Eq. (2) was transformed into a linear form with the following 

equivalent form: 

 

κ = min(t −
1

m
∑

si0
−

xi0

m

i=1

)

subject to

{
 
 
 

 
 
 
1 = t +

1

s1 + s2
(∑

sr
d

yr0
d

s1

r=1

+∑
sr
ud

yr0
ud

s2

r=1

)

 x0t = Xμ + S
−

y0
dt = Ydμ − Sd

y0
ud = Yudμ + Sud

S− ≥ 0, Sd ≥ 0, Sud ≥ 0, μ ≥ 0, t ≥ 0 

 (3) 

 

The Super-SBM model incorporating CO2 emissions was adopted as an undesirable variable based on 

the previous studies (Li et al., 2013; Zhang et al., 2018) to construct a reasonable efficiency assessment system, 

because some DMUs are simultaneously efficient. The formula is as follows: 
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ρ∗ =

[
 
 
 
 
 1
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r
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]
 
 
 
 
 

subject to 
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 x ≥∑ θjxj

N

j=1,≠0

y
d
≤∑ θjyj

d
N

j=1,≠0

y
ud
≥∑ θjyj

ud
N

j=1,≠0

x ≥ x, y
d
≤ y0

d, y
ud
≥ y0

ud, y
d
≥ 0, θ ≥ 0

 (4) 

 

where ρ∗ represents the super efficiency of the DMUs, and its value can be >1, while other information is 

consistent with Eq. (2). Set ∑ θi = 1
n
i=1  in Eq. (2) and ∑ θi = 1

n
i=1,≠0  in Eq. (4), respectively, to meet the 

condition of CRS. 

The above DEA models were mainly used to measure cross-sectional LCE comparisons between 

different DMUs. For a specific DMUs, it is necessary to track the changes in LCE performance over time (Wu 

et al., 2012). MPI (Malmquist productivity index) proposed by Färe et al. (1994) was used to estimate the 

dynamic changes in the TFP of China's LE. From period t to t + 1, the MPI of the growth in TFP can be specified 

as follows: 

 

MPIj(t, t + 1) = [
γt(xj

(t+1)
, yj
(t+1)d

, yj
(t+1)ud

) × γ(t+1)(xj
(t+1)

, yj
(t+1)d

, yj
(t+1)ud

)

γt (xj
(t)
, yj
(t)d
, yj
(t)ud

) × γ(t+1) (xj
(t)
, yj
(t)d
, yj
(t)ud

)
]

1 2⁄

 (5) 

 

where MPIj(t, t + 1) captures the dynamic low-carbon eco-efficiency (DLCE) of DMUsj from period t to t + 1; 

γt(xj
(t), yj

(t)d, yj
(t)ud) and γt+1(xj

(t), yj
(t)d, yj

(t)ud) represent the efficiency values of DMUsj based on its inputs, 

desirable outputs and undesirable outputs at period t for the reference technology at t and t + 1, while 

γt(xj
(t+1), yj

(t+1)d, yj
(t+1)ud) and γt+1(xj

(t+1), yj
(t+1)d, yj

(t+1)ud) are the efficiency values of DMUsj based on its 

inputs, desirable outputs and undesirable outputs at period t + 1 for the reference technology at t and t + 1. 

Specifically, MPIj(t, t + 1) > 1, MPIj(t, t + 1) = 1 and MPIj(t, t + 1) < 1 designate that the LCE of DMUsj 

has improved, remained unchanged and degraded from period t to t + 1, respectively. 

 

Spatial Econometric Model 

Because flows of the production factors result in spatial autocorrelations, IA in one region exerts a spatial 

spillover effect on adjacent provinces (Wang et al., 2019; Damayanti and Walandoum, 2018). Therefore, a 

method based on spatial econometric modelling was introduced in this study. The first step for performing the 

spatial econometric model lay in the spatial weight matrix design. Unfortunately, a symmetric spatial weight 

matrix is usually not suitable for modelling interprovincial correlations. The correlations between different 

regions are also affected by the scale of investment and their economic development level (Lin et al., 2006). 

Amore economically developed province usually has a more significant spillover effect on its adjacent areas. 

For example, the effect of Guangdong province on Yunnan would be significantly higher than the effect of 

Yunnan province on Guangdong. Thus, an asymmetric spatial weight matrix needed to be constructed to reflect 

the heterogeneity in the mutual relationships between various provinces. Following the first law of geography 

(Tobler, 1970), everything is related to everything else, while near things are closer than those between things 

far away from each other. Therefore, we constructed an econometric-geographical weight matrix, which was 

expressed as the product of the geographical distance weight matrix and the diagonal elements of the matrix 

were the proportion of the per capita RGDP: 

 

W2 = W1 ∗ diag (
PRGDP1

PRGDP
,
PRGDP2

PRGDP
, . . . ,

PRGDPn

PRGDP
) (6) 
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where diag(∙) expresses a diagonal matrix, while PRGDP represents the average PRGDP of all provinces; W1 

represents the geographical spatial weight matrix, which was constructed based on the longitude and latitude 

between the two provinces. 

The global Moran's index, first proposed by Moran (1948) to examine the spatial autocorrelation of the 

economic variables based on a spatial random distribution, can be used to detect whether the LCE exhibited 

spatial autocorrelation. The formula is as follows: 

 

Moran′s I =
n∑ ∑ wij(LCEi − LCE)(LCEj − LCE)

n
j=1

n
i=1

∑ ∑ wij
n
j=1

n
i=1 (LCEi − LCE)

2  (7) 

 

where LCEi represents the LCE index in province i(j), while LCE expresses the average LCE; n is the number 

of provinces; wij is the spatial weight matrix constructed by Eq. (6). Specifically, the interval for Moran's I is 

[−1,1], where[−1,0] indicates the negative spatial autocorrelation among spatial entities, [0,1] indicates the 

positive autocorrelation among spatial entities, while 0 means no spatial autocorrelation. 

The Spatial Durbin Model (SDM) was adopted to verify the effects of IA on LCE. Referring to (Elhorst, 

2013), the SDM with a general form is as follows: 

 

Y = αIN + ρWY + βX + θWX + ε (8) 

 

where Y denotes the dependent variable; X is the independent variables (including the core independent and 

control variables); α, β and θ are the vectors of the regression coefficients; IN is an N −order identity matrix, 

while ε denotes the error term. Both the spatial lag term of the dependent variable (Wy) and the independent 

variables (Wx) are included in the SDM model (Yu et al., 2013). Notably, the criteria for selecting the Spatial 

Lag Model (SLM) or Spatial Error Model (SEM) depend on the significance of the Lagrange Multiplier (LM) 

test and its robustness test, and the model with a better R2 will be selected. If θ = 0, the SDM will be degraded 

to the SLM, while if θ + ρβ = 0, the SDM model will be degraded to the SEM model (Lv et al., 2019). 

Therefore, the Wald and LR tests were adopted to examine whether the SDM model would be simplified to the 

SLM or SEM models. 

 

Data sources and indicators 

Adopting panel data from 30 selected provinces in China (excluding Tibet) from 2005 to 2017, we first explored 

the temporal and spatial characteristics of the LCE. Then the SDM model was employed to examine whether 

IA contributed to LCE in China. The data was mainly collected from; the China Environmental Statistical 

Yearbook, China Energy Statistical Yearbook, China Statistical Yearbook and Statistical Yearbook in each 

province. 

 

Indicators used for calculating provincial low-carbon eco-efficiency 

The LCE assessment system included three dimensions: the inputs, desirable outputs and undesirable outputs. 

The underlying principle was to reduce the inputs of production factors and the output of CO2 emissions in 

regional economic development. First, capital and labour were two crucial production inputs factors at the 

macro-regional level (Chang et al., 2013). Meanwhile, energy consumption was also related to regional 

development1 (Dhingra and Das, 2014), while water and land, as natural resources, are essential for improving 

LCE. Third, the real gross domestic product acted as the desired output. Finally, CO2 emissions (CE), as a key 

indicator characterising LCE, was defined as an undesirable output (Wang and Chang, 2014). The relevant 

information concerning the LCE assessment system is shown in Table 1. 

The paper adopted the perpetual inventory method to calculate provincial capital stocks (Zhang et al., 

2019), taking into account with data availability, which was defined as follows: 

 
Kit = (1 − δ)Kit−1 + Iit
Ki2005 = Ii2005 (gi + δ)⁄

 (9) 

 

 
1 According to the NBSC, TE includes all types of energy, i.e., natural gas, petroleum and coal, all of which are transformed into tons of 

standard coal of equivalent. (The query link: http://www.stats.gov.cn/tjsj/ndsj/2020/indexch.htm). 
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where Kit denotes the provincial capital stocks in period i for year t; δ represents the depreciation rate of capital, 

which was 10.96% (Shan, 2008); Iit expresses the amount of investment in provincial fixed assets; gi represents 

the annual average growth rate of the domestic fixed investment. The related monetary indicators in this paper 

were adjusted to 2005 constant prices. The GDP was deflated with GDP deflators, while the provincial capital 

stock was deflated by the price index for investment in fixed assets. 

Following Shan et al. (2016), the provincial CE was calculated as follows: 

 

CEi = ADi × EFi (10) 

 

where CEi denotes the CO2 emissions from different energy types; ADi denotes the (activity data) fossil fuels 

combusted within the provincial boundary measured in physical units (metric tons of fuel expressed as t fuel), 

while EFi expresses the emissions factors for the relevant fossil fuels. 

Table 1 shows the descriptive statistics of the LCE assessment system. The mean provincial capital stock 

was 40,120.398×108 Yuan (2005 constant prices). The desirable output of the GDP was 13,282.109×108 Yuan 

(2005 constant prices), whereas the undesirable output of CO2 emissions was 2,043.369 ×104 tons. 

 

Table 1 Indicator's selection for assessing the provincial LCE index 

Dimension Primary index Sub-Index Symbol Unit References 

Inputs Resource inputs Land for urban construction LU sq.km Ren et al. (2018) 

  Total water consumption TW 104 tons Hubacek et al. (2009) 

  Total energy consumption TE 104 TCS Yan Zhou et al. (2013) 

 Social resource inputs Capital stock CS 108 yuan Meng & Qu (2022) 

  Labour employment LE 104 persons Shang et al. (2020) 

Outputs Desirable output Gross domestic product GDP 108 yuan Cheng et al. (2018) 

 Undesirable output CO2 emissions CE 104 tons Teng et al. (2021); 

Lin et al. (2020) 

 

Table 2 displays the Pearson correlation matrices. It can be seen that the correlation coefficients between 

the input and output factors were all positive, implying the ''isotonicity'' of the inputs and outputs in the DEA 

model (Mostafa, 2009), which, in turn, highlights the reliability of the selected indexes capturing China's LCE. 

 

Table 2 Pairwise correlation matrices for the LCE assessment system 
Variables LU TW TE CS LE GDP CE 

LU 1.000       

TW 0.619* 1.000      

TE 0.780* 0.433* 1.000     
CS 0.565* 0.328* 0.643* 1.000    

LE 0.849* 0.515* 0.742* 0.546* 1.000   

GDP 0.622* 0.501* 0.766* 0.806* 0.729* 1.000  
CE 0.750* 0.328* 0.915* 0.597* 0.618* 0.659* 1.000 

Note: *p<0.01 (two-tailed) 

 

Selection of variables for industrial structure adjustment 

As a dynamic process, IA usually refers to the proportion of changes of three industries, which is one of the 

determinants of economic growth. Referring to Zhang (2015), IA incorporates two crucial components: one 

regulates the speed of economic resources transfers between the industries, namely industrial structure 

advancement (ISA); the other regulates the proportion of changes of the three industries, namely industrial 

structure rationalisation (ISR). According to UNCTAD (2019), structural transformation is a crucial process; 

without improving a country's productive capacity and shifting resources to higher productivity sectors, 

countries will fail to deliver on the 2030 Agenda for Sustainable Development. Specifically, we used the 

following equations to measure provincial ISA and ISR levels: 

ISA (Zheng et al., 2021). ISA mainly reflects the changes in industrial proportion and the improvement 

of the labour productivity (Lu et al., 2020). The output value of the tertiary industry to secondary industry was 

used to measure the provincial ISA level. 

ISR (Liang et al., 2021). The formula for measuring the ISR level is as follows: 
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ISR =
∑ (

Yi
Y
) (
Li
L
)n

i=1

√∑ (
Yi
Y
)
2

n
i=1

√∑ (
Li
L
)
2

n
i=1

 (11) 

 

where Yi represents the output values of industry i; Li represents the employed people in industry i; Y and L 

denote the gross production and total employment. ISR ∈ [0,1], the higher the value, the better the synergy 

between the input and output structures of factors; thus, the allocating of economic factors in three key industries 

is more reasonable (Liu et al., 2021). 

 

Selection of control variables 

Based on the existing literature and relevant theories, we chose four indicators as control variables. 

(1) Technological innovation (TI). Schumpeter (1934) first integrated TI into the economic analysis and 

asserted that economic development was an evolutionary process with TI at its core. Subsequently, 

Romer (1990), Grossman and Helpman (1991), Aghion and Howitt (1922) and Goh et al. (2020) 

viewed R&D activities as a form of decision-making in firms and endogenised the impacts of TI on 

economic growth. Specifically, adopting environmentally-friendly technologies can aid firms to 

improve production capacity, lower energy consumption and reduce pollutant emissions to effectively 

enable cleaner production, thus, improving resource efficiency and promoting sustainable economic 

development. The proportion of three kinds of domestic patents granted to three kinds of domestic 

patent applications was adopted to denote the provincial TI level. 

(2) Economic policy uncertainty2 (EPU). According to Gulen & Ion (2016), EPU refers to any potential 

risks associated with economic policies. Market players cannot accurately foresee whether, when, and 

how the government may change economic policies. However, as one of the most crucial risks of 

firms, EPU plays a pivotal role in the decision-making processes of firms (Tran, 2019). Further, firms 

tend to use relatively cheap fossil fuels when they face the increased EPU, which, in turn, increases 

CO2 emissions (Yu et al., 2021) and degrades the environment, thus negatively affecting the LCE. 

(3) Foreign direct investment (FDI). According to the pollution haven hypothesis, multinational 

enterprises (MNEs) transfer energy-intensive and highly polluting industries to countries with lower 

environmental regulations to circumvent costly regulatory compliance in home countries. Thus, 

developing countries suffer more significant environmental issues limiting their eco-efficiency 

improvement. Conversely, the pollution halo hypothesis shows that MNEs diffuse their modern 

technologies in developing countries and further enhance the eco-efficiency caused by the 

technological spillover effect (Zhang and Zhou, 2016). Therefore, the paper selected the proportion 

of actual use of FDI to RGDP as an indicator. 

(4) Financial development (FD). On the one hand, a sound financial system promotes economic activities 

by stimulating the stock market and encouraging investors to buy energy-saving production 

equipment, ultimately improving energy utilisation (Shah et al., 2019). On the other hand, a sound 

financial mechanism can also help reduce information asymmetries, especially in environmental 

projects and enrich investment returns by guiding capital flows, thus, enhancing environmental 

efficiency (Sadorsky, 2010). This paper selected the ratio of loans balance from banks and financial 

institutions to RGDP as an indicator. 

 

 

RESULTS AND DISCUSSIONS 

 

Low-carbon eco-efficiency 

The temporal variations and spatial distribution of LCE for China from 2005 to 2017 are shown in Figure 1. 

Overall, it was observed that the temporal variations of LCE displayed a ''U-shaped'' trend. In the national 11th 

Five-Year Plan, China's central government announced that ''China will establish and refine the GGE accounting 

system, establish a national carbon emissions trading market, reduce CO 2 emissions dramatically  
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by adjusting industrial structure and energy structure, and increase forest carbon sinks''. Therefore, the LCE 

exhibited a downward trend and went up since 2009. Further, the National 12th Five-Year Plan clarified the 

carbon and energy reduction goals (See, Introduction). 

Moreover, to reduce CO2 emissions and develop the LE, in October 2011, China's National Development 

and Reform Commission issued a Notice on Pilots for Carbon Emissions Trading, which formally approved 

carbon trading in seven of China's provinces and cities: Beijing, Tianjin, Shanghai, Chongqing, Hubei, 

Guangdong and Shenzhen. Shenzhen took the lead in this group in June 2013 to launch carbon emissions 

trading, with the other pilot areas following subsequently. Adopting the DID approach, Qi et al. (2021) proved 

that there was evidence to demonstrate that the effects of the carbon trading pilot policy on the low-carbon 

international competitiveness of industries were positive, highlighting that the policy was effective in reducing 

CO2 emissions and improving LCE. Moreover, the results also demonstrated that the central government's 

efforts in combating GGE and improving LCE were productive because the LEC index had exhibited a 

significantly increasing trend since 2011. We also geo-visualised the spatial distribution of LCE in China for 

seven typical years, namely, 2005, 2007, 2009, 2011, 2013, 2015 and 2017. It was found that the LCE in China's 

eastern region was better than the central and western regions. The LCE levels of eastern coastal provinces, 

such as Guangdong, Zhejiang, Jiangsu were higher than the other eastern provinces (i.e., Shandong, Tianjin). 

 

 
Figure 1 Spatial-temporal variation of LCE over China from 2005 to 2017 

 

The LCE values of China's 30 provinces from 2005 to 2017 were expressed using a colour chart in Table 

3. Firstly, on the whole, the LCE performance of Beijing, Tianjin, Shanghai and Guangdong was significantly 

higher than that of other provinces over the 13 years. Among them, Beijing played a leading role in the process 

of LCE, with Tianjin and Guangdong following subsequently. Concerning the temporal trend, all provinces 

exhibited an upward trend excluding small fluctuations in some provinces such as Fujian (''U-shaped'' trend), 

Hainan (inverted ''N-shaped'' trend). However, the LCE levels of Guizhou, Yunnan, Shaanxi, Gansu, Qinghai, 

Ningxia and Xinjiang were relatively low, among which Qinghai ranked at the bottom, with an average value 

of 0.147. Up until 2017, the top ten provinces in China for LCE levels were; Beijing, Tianjin, Shanghai, 

Guangdong, Jiangsu, Liaoning, Chongqing, Fujian, Sichuan and Shandong, comprising eight eastern provinces 

and two western provinces. Guangxi, Shaanxi, Inner Mongolia, Xinjiang, Jilin, Guizhou, Gansu, Shanxi, 

Ningxia and Qinghai ranked in the bottom ten comprising one eastern province, one central province and eight 

western provinces. The results  demonstrated that  the  LCE performance of the central and  
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western provinces was backward, as compared with the eastern provinces, and there was significant room for 

improvement. It is worth mentioning that the LCE in the northeastern provinces was not good, Jilin had the 

lowest value, and Heilongjiang exhibited a significant downward trend during the research period, while the 

growth of the LCE in Jilin was evident, especially in the year of 2016. Hence, the northeastern provinces must 

overcome backward production capacity and promote old and new economic kinetic energy transformation, 

thus gradually developing their LE and improving LCE. 

 

Table 3 Color chart of LCE levels of China's 30 provinces from 2005 to 2017 
 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 Average 

Beijing 1.276 1.286 1.275 1.240 1.240 1.288 1.314 1.297 1.334 1.301 1.291 1.304 1.319 1.290 
Tianjin 1.428 1.305 1.292 1.158 1.266 1.103 1.223 1.258 1.268 1.375 1.377 1.390 1.285 1.287 

Hebei 0.337 0.367 0.376 0.329 0.328 0.324 0.390 0.380 0.363 0.355 0.338 0.321 0.341 0.350 

Shanxi 0.277 0.264 0.262 0.248 0.246 0.232 0.249 0.252 0.247 0.242 0.236 0.210 0.213 0.244 
Inner Mogolia 0.249 0.193 0.205 0.207 0.217 0.219 0.238 0.243 0.256 0.257 0.259 0.248 0.277 0.236 

Liaoning 0.351 0.401 0.411 0.369 0.408 0.382 0.453 0.431 0.435 0.438 0.442 1.002 1.016 0.503 

Jilin 0.215 0.205 0.216 0.188 0.196 0.177 0.179 0.184 0.189 0.206 0.222 0.208 0.244 0.202 
Heilongjiang 1.003 0.387 0.362 0.353 0.358 0.325 0.357 0.358 0.362 0.408 0.404 0.396 0.415 0.422 

Shanghai 1.186 1.201 1.204 1.176 1.172 1.177 1.187 1.198 1.207 1.168 1.176 1.183 1.189 1.186 

Jiangsu 0.642 0.695 0.646 0.547 0.546 0.678 0.704 0.702 0.688 0.708 0.684 0.627 1.042 0.685 
Zhejiang 1.006 0.785 0.755 0.716 0.777 1.005 1.028 1.050 1.028 1.015 0.789 0.646 1.031 0.895 

Anhui 0.482 0.390 0.366 0.298 0.318 0.321 0.353 0.362 0.362 0.387 0.385 0.352 0.371 0.365 

Fujian 0.798 0.779 0.760 1.001 0.688 1.021 1.052 1.029 1.055 1.043 1.005 0.605 1.004 0.911 
Jiangxi 0.355 0.389 0.379 0.339 0.346 0.337 0.441 0.383 0.384 0.424 0.406 0.349 0.385 0.378 

Shandong 0.422 0.471 0.454 0.434 0.429 0.443 0.446 0.430 0.439 0.431 0.430 0.388 0.518 0.441 

Henan 0.453 0.458 0.391 0.342 0.358 0.363 0.453 0.461 0.485 0.481 0.463 0.419 0.503 0.433 
Hubei 0.497 0.398 0.369 0.352 0.329 0.314 0.358 0.408 0.429 0.453 0.438 0.403 0.493 0.403 

Hubnan 0.340 0.364 0.365 0.363 0.347 0.336 0.411 0.399 0.408 0.467 0.473 0.414 0.478 0.397 

Guangdong 1.059 1.102 1.112 1.101 1.096 1.030 1.058 1.082 1.074 1.152 1.150 1.118 1.122 1.097 
Guangxi 0.357 0.358 0.332 0.307 0.279 0.249 0.289 0.295 0.312 0.295 0.297 0.274 0.325 0.305 

Hainan 1.091 0.463 0.399 1.006 1.014 1.006 0.405 0.358 0.352 0.388 0.355 0.316 0.336 0.576 

Chongqing 0.342 0.331 0.331 0.327 0.361 0.352 0.359 0.393 0.426 0.550 0.636 0.676 1.013 0.469 
Sichuan 0.323 0.335 0.312 0.305 0.298 0.314 0.368 0.387 0.392 0.442 0.504 0.455 0.584 0.386 

Guizhou 0.198 0.213 0.203 0.192 0.191 0.194 0.212 0.214 0.228 0.227 0.228 0.204 0.230 0.210 

Yunnan 0.271 0.253 0.242 0.233 0.231 0.231 0.253 0.265 0.282 0.336 0.353 0.322 0.341 0.278 
Shaanxi 0.324 0.287 0.272 0.265 0.264 0.264 0.282 0.300 0.302 0.312 0.302 0.293 0.312 0.291 

Gansu 0.219 0.218 0.211 0.194 0.194 0.181 0.183 0.200 0.209 0.224 0.219 0.207 0.217 0.206 

Qinghai 0.151 0.152 0.151 0.152 0.151 0.147 0.145 0.144 0.133 0.149 0.144 0.143 0.144 0.147 
Ningxia 0.155 0.162 0.163 0.161 0.166 0.164 0.176 0.181 0.177 0.168 0.168 0.156 0.168 0.166 

Xinjiang 0.256 0.267 0.255 0.242 0.256 0.244 0.240 0.234 0.225 0.222 0.226 0.212 0.269 0.242 

Average 0.535 0.483 0.469 0.471 0.469 0.481 0.494 0.496 0.502 0.521 0.513 0.495 0.573  

 

To effectively capture the regional heterogeneity, Figure 2 displays the LCE during the research period. 

It can be seen that the LCE exhibited an upward trend among the four economic zones, indicating that provincial 

LCE increased volatility. The results also showed that the LCE of the northeast area gradually caught up with 

the level of the central area and successfully surpassed it in 2005, while the western area had the lowest 

efficiency level with an average LCE of 0.267. Moreover, the regional heterogeneity was indicated to be 

statistically significant by adopting the Kruskal-Wallis ranks test with a value of 41.239 (p-value=0.0001), 

which again emphasised that the LCE performance of eastern China was more evident than the other economic 

zones. It is widely acknowledged that the eastern region is economically more advanced. Therefore, the local 

government can allocate more funds and capital to develop high-tech industries characterised by the ''two-low'' 

group. Therefore, the re-articulation and optimisation of the industrial structure can improve energy utilisation 

efficiency and reduce CO2 emissions. The tertiary industry mainly refers to the capital- and technologically-

intensive industrial sectors (i.e., high-tech manufacturing). With the policy support from the Rise of Central 

China plan, the central region has developed rapidly based on its abundant natural resources. However, its 

industrial structure remains poorly managed; its economic activities have resulted in high energy consumption, 

thereby increasing CO2 emissions. Compared with other economic zones, the western region has lagged 

economically concerning economic strength and technology levels. The results showed that the LCE 

performance of the western region was still hindered, even though the fact that the central government has made 

great efforts in the construction of local areas, such as the Development of the Western Region in China. Zhang 

and Choi (2013) suggested that the government provide adequate funds and technical support to the western 

region, thus gradually overcoming the regional discrepancy. 
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Figure 2 The average LCE of China's four economic zones 

 

Adopting Eq. (5), we calculated the DLCE values of China's 30 provinces over time, as shown in Table 

4. It can be seen that China's 30 provinces experienced an overall positive change (= 1.028) during the research 

period, suggesting that the LCE improved by 2.8% annually since 2005. The provincial average DLCE values 

exhibited a positive shift, excluding Shaanxi Province (= 0.996), designating that almost all of provinces made 

a great achievement in their LCE. Moreover, the annual average DLCE values showed a positive shift, indicating 

that China's economy is gradually following a low-carbon economic development pattern. Among them, 

Hainan, Beijing in the eastern region were found to have the highest annual growth rate. Figure 3 displays the 

average DLCE values of four economic zones over time. 

 

Table 4 The DLCE values of China's 30 provinces from 2005/2006 to 2016/2017 
Province 2005/2006 2006/2007 2007/2008 2008/2009 2009/2010 2010/2011 2011/2012 2012/2013 

Beijing 1.042 1.047 1.028 1.081 1.035 1.064 1.042 1.052 

Tianjin 1.024 1.013 1.020 1.028 1.020 1.002 1.007 1.008 

Hebei 1.012 1.014 1.029 0.950 0.977 1.023 1.026 1.024 
Shanxi 0.997 0.993 0.976 0.995 0.988 1.008 1.010 1.009 

Inner Mongolia 1.018 1.073 1.040 1.040 1.023 1.011 1.012 1.043 

Liaoning 1.072 1.026 1.079 1.034 0.975 1.076 0.996 1.030 
Jilin 1.096 1.091 1.019 1.018 0.946 0.978 1.037 1.053 

Heilongjiang 1.041 1.044 1.068 1.051 0.945 1.019 1.078 0.999 

Shanghai 1.029 1.036 1.032 1.070 1.054 1.072 1.093 1.026 
Jiangsu 1.064 1.089 1.010 1.028 1.015 0.975 0.988 1.093 

Zhejiang 1.049 1.034 1.044 1.049 0.953 1.022 1.098 1.009 

Anhui 1.029 1.045 1.018 1.023 1.056 1.097 1.079 1.070 
Fujian 0.991 1.007 0.997 1.066 1.049 1.035 1.023 1.032 

Jiangxi 0.988 1.017 1.029 0.947 0.970 1.017 1.029 1.040 

Shandong 1.017 1.070 1.030 0.958 1.002 1.006 1.003 1.034 
Henan 1.029 1.024 1.022 1.025 1.037 1.010 0.996 0.981 

Hubei 1.024 1.040 1.027 1.029 1.039 1.020 1.008 1.004 

Hunan 1.038 1.013 1.014 1.029 1.024 1.009 1.097 0.979 
Guangdong 1.023 1.019 0.981 0.991 0.997 1.002 1.004 1.002 

Guangxi 1.002 1.007 1.021 1.029 1.022 1.010 1.010 1.030 

Hainan 1.077 1.061 1.000 1.072 1.065 1.091 1.080 1.065 
Chongqing 0.993 1.007 1.017 1.048 0.984 0.992 1.046 1.090 

Sichuan 1.014 0.945 1.003 0.946 1.033 1.026 0.999 0.994 
Guizhou 1.025 1.040 1.057 1.067 1.076 1.030 1.060 1.074 

Yunnan 0.958 1.030 1.030 0.979 0.988 1.011 1.015 1.023 

Shaanxi 1.049 1.060 1.040 1.055 1.065 1.063 1.013 1.004 
Gansu 1.030 1.043 1.007 1.040 1.029 1.040 1.007 1.040 

Qinghai 1.059 1.064 1.007 1.040 1.057 1.070 1.049 1.037 

Ningxia 1.033 1.010 1.015 1.006 1.025 1.007 1.040 1.050 
Xinjiang 1.030 1.057 1.070 1.024 1.028 1.033 1.049 1.039 

Average 1.028 1.034 1.024 1.024 1.016 1.027 1.033 1.031 
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Table 4 Cont. 
Province 2013/2014 2014/2015 2015/2016 2016/2017 Average 

Beijing 1.090 1.000 1.098 1.084 1.055 
Tianjin 1.090 1.093 1.079 1.047 1.036 

Hebei 0.992 0.971 1.040 0.977 1.003 

Shanxi 0.997 0.980 0.995 1.004 0.996 
Inner Mongolia 1.000 1.007 1.042 1.005 1.026 

Liaoning 1.021 1.010 1.052 0.965 1.028 

Jilin 1.021 1.094 1.042 1.068 1.039 
Heilongjiang 0.998 1.000 1.025 1.003 1.023 

Shanghai 1.087 1.051 1.024 1.005 1.048 

Jiangsu 1.092 1.097 1.058 1.068 1.048 
Zhejiang 1.019 1.003 1.078 1.004 1.030 

Anhui 1.030 1.009 1.033 1.018 1.042 

Fujian 1.069 1.044 1.022 1.052 1.032 
Jiangxi 1.027 0.982 0.990 1.019 1.005 

Shandong 1.001 0.984 1.013 0.990 1.009 

Henan 1.017 0.989 1.041 1.064 1.019 
Hubei 1.007 1.030 1.030 1.056 1.026 

Hunan 0.952 1.027 1.021 1.047 1.021 

Guangdong 1.003 1.021 1.028 1.003 1.006 
Guangxi 0.949 1.014 1.039 1.031 1.014 

Hainan 1.069 1.079 1.040 1.056 1.063 

Chongqing 1.049 1.116 1.082 1.069 1.041 

Sichuan 1.008 1.031 1.072 1.031 1.009 

Guizhou 1.074 1.060 1.070 1.064 1.058 

Yunnan 1.030 1.047 1.034 1.080 1.019 
Shaanxi 1.002 1.024 1.043 1.088 1.042 

Gansu 1.046 1.040 1.018 1.040 1.032 

Qinghai 1.080 1.002 1.004 1.050 1.043 
Ningxia 0.942 0.980 1.005 0.962 1.006 

Xinjiang 1.010 1.007 1.013 1.028 1.032 

Average 1.026 1.026 1.038 1.033 1.028 

 

 
Figure 3 The average DLCE values of four economic zones over time 

 

Stationary and cointegration testing 

This paper adopted the Levin-Lin-Chu (LLC), Fisher PP and Fisher ADF tests to carry out the unit root testing 

to avoid spurious regression caused by the nonstationary data, as shown in Table 5. The results rejected the null 

hypothesis that all series contained unit-roots favouring the alternative hypothesis that at least some were 

stationary. The panel Pedroni cointegration test was used to conduct panel cointegration test. It was found that 

the model underlying the reported statistics in Table 6 rejected the null hypothesis of no cointegration,  
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favouring the alternative hypothesis that the variables were cointegrated in all panels. Hence, the regression 

analysis could be performed. 

 

Table 5 Unit root test results 
Variable LLC Fisher PP Fisher ADF 

LEE -1.3850* 10.1125*** 4.7181*** 

ISA -4.1358*** 2.3938*** 3.6601*** 

ISR -1.5416* 10.7767*** 3.2967*** 
FDI -5.8490*** 3.3244*** 7.5712*** 

TI -5.3170*** 12.6997*** 10.0728*** 

EPU -6.5462*** 15.8108*** 9.3757*** 
FD -14.3558*** 2.9547*** 5.4932*** 

Note: *p<0.1, ***p<0.001 

 

Table 6 Pedroni cointegration test results 
 AIS model RIS model 
 Statistic p-value Statistic p-value 

Modified Phillips-Perron t 6.6133*** 0.000 8.6013*** 0.000 

Phillips-Perron t -11.2931*** 0.000 -5.8861*** 0.000 

Augmented Dickey-Fuller t -6.9437*** 0.000 -3.6867*** 0.000 

Note: ***p<0.01 

 

Spatial autocorrelation analysis 

Table 7 lists the Moran's I test results for the whole sample. The results implied that Moran’s I value passed at 

least the 1% significance test. At the same time, the results further confirmed a positive spatial correlation 

between the LCE in China's provinces. Provinces with a higher LCE were spatially adjacent to each other, while 

provinces with a lower LCE tended to be concentrated. The results showed that geographical factors played a 

vital role in studying China's LCE and that spatial influence elements should be included in the regression. 

 

Table 7 Moran's I test results 
Year 2005 2006 2006 2008 2009 2010 2011 

Moran's I 0.327*** 0.404*** 0.397*** 0.334*** 0.362*** 0.365*** 0.411*** 

Year 2012 2013 2014 2015 2016 2017  

Moran's I 0.406*** 0.402*** 0.384*** 0.350*** 0.298*** 0.281***  

Note: ***p<0.01 

 

Effects of industrial structure adjustment on low-carbon eco-efficiency 

The selection of the spatial model should be identified and tested to avoid the influence of setting errors on the 

effectiveness of the model estimation. Firstly, the MATLAB software was used to carry out the LM test and 

robust LM tests, as shown in Table 8. The results showed that the SDM model was accessible in this paper. 

Secondly, the Wald test and LR test results further revealed that the selected SDM model could not be simplified 

to the SLM or SEM models. Thirdly, the results of the Hausman test indicated that it was more appropriate to 

adopt a fixed-effects model. 

 

Table 8 Model diagnostics 
 ISA model p-value ISR model p-value 

LM Lag 290.799*** 0.000 261.713*** 0.000 
LM Lag (Robust) 5.462*** 0.000 24.374*** 0.000 

LM Error 333.745*** 0.000 265.871*** 0.000 
LM Error (Robust) 48.408*** 0.000 28.532*** 0.000 

LR Lag 20.34*** 0.001 21.51*** 0.000 

LR Error 25.72*** 0.000 26.77*** 0.000 
Wald Lag 30.83*** 0.000 41.79** 0.023 

Wald Error 71.24*** 0.000 61.29*** 0.000 

Hausman 55.55*** 0.000 63.87*** 0.000 

Note: ** p<0.05, *** p<0.01 

 

Finally, the SDM model with fixed effects was adopted to verify the effects of ISA and ISR on China's 

LCE, respectively. According to Table 9, first, the coefficients of spatial ρ in two models were significantly 

positive, consistent with the Moran's I reported in Table 7. After incorporating spatial elements, the estimated 

coefficients of ISA and ISR were statistically positive at the 1% significance level, suggesting that vigorously  
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adjusting and optimising industrial structure was conducive to reducing CO2 emissions and further promoting 

China's LCE. Second, the coefficient of FDI was statistically positive in the two models. Thus, the pollution 

halo hypothesis was identified. FDI brought advanced technologies, and the resulting knowledge spillover and 

industrial driving effects have positively contributed to the LCE enhancement. Third, TI, as a crucial engine, 

was essential for promoting LCE. Fourth, referring to the real options theory, EPU increased the option value 

so that firms postponed their acquisition and investment until the potential uncertainty was eliminated (Wang 

et al., 2014). From a micro level, the increasing EPU also lowered the resource allocation efficiency of firms 

(Kim and Kung, 2017), thus, causing the insufficient allocation of economic resources and degrading the LCE 

growth of firms. Finally, financial sectors actively allocated financial resources to productive investment 

ventures that adopted energy-efficient and modern technologies for production (Shahbaz et al., 2018), which 

boomed domestic production and improved environmental quality by reducing energy consumption. Thus, the 

positive role of FD was determined. 

 

Table 9 Spatial Durbin Model test results 
Variable LCE Wx LCE Wx 

ISA 0.093*** 0.213***   

 (3.47) (4.29)   
FDI 0.365*** 1.051*** 0.126* 0.517*** 

 (5.63) (7.20) (1.89) (3.36) 

TI 0.442*** 1.123*** 0.234** 1.002*** 

 (3.58) (3.34) (1.99) (3.21) 

EPU -0.006 -0.193*** -0.006 -0.209*** 
 (-0.40) (-4.19) (-0.38) (-4.93) 

FD 0.124*** 0.022 0.195*** 0.270*** 

 (3.40) (0.27) (7.05) (4.78) 
ISR   0.114*** 0.118*** 

   (7.51) (3.19) 

Spatial ρ 0.493***  0.371***  

 (7.03)  (4.70)  

Sigma2_e 0.049***  0.043***  
 (13.56)  (13.78)  

L-ratio test 27.152  56.678  

Adj R-squared 0.631  0.7752  
Observation 390  390  

Note: * p<0.1, ** p<0.05, *** p<0.01; t statistics in parentheses  

 

As the spatial econometric model analysed the sophisticated spatial dependence among the spatial 

entities, the estimated coefficients contained a large amount of information about the relationships among the 

spatial entities. Changes in the independent variables associated with a spatial unit will directly affect the spatial 

it, generating a direct effect. At the same time, it also indirectly affects other spatial units, producing the so-

called indirect effect. LeSage and Pace (2009) proposed the partial differential approach to decompose the 

spatial spillover effects into direct and indirect effects through spatial cross-sectional data. Elhorst (2013) further 

extended this method to spatial panel data. Therefore, the partial derivatives method was adopted to decompose 

the total effects of ISA and ISR on LCE into direct and indirect effects, as shown in Table 10. The resulted show 

that IA could be regarded as an excellent instrument to stimulate China's LCE growth because the direct, indirect 

and total effects of ISA and ISR on LCE were statistically positive at the 1% significance level. Specifically, 

for every 1 unit increase in local ISA, the LCE in the local province increased by 0.122. 

 In contrast, in adjacent areas, it increased by 0.491. At the same time, a 1 unit local area increase in ISA 

resulted in a net increase in the LCE of the country as a whole by 0.612. Similarly, an increase of 1 unit in local 

ISR increased LCE by 0.126, increasing by 0.245 in adjacent areas. A 1 unit local area increase in ISR resulted 

in a net increase in the LCE of the country as a whole by 0.371. 

 

Table 10 Spatial spillover effect decomposition 
 Direct effect Indirect effect Total effect 

ISA 0.122*** 0.491*** 0.612*** 
 (4.17) (4.69) (5.07) 

Covariables Yes Yes Yes 

 Direct effect Indirect effect Total effect 

ISR 0.126*** 0.245*** 0.371*** 
 (8.36) (5.08) (7.46) 

Covariables Yes Yes Yes 

Note: ***p<0.01; t statistics in parentheses 
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DISCUSSIONS AND ROBUSTNESS TEST 

 

Discussions 

Why IA plays a crucial role in promoting LCE in China? China has experienced long-term traditional 

industrialisation and industrial structure transformations, from the heavy industries to the technological and 

capital intensive sectors (Wang et al., 2013). The secondary industry was an essential pillar industry for 

stimulating China's economic growth (Fan et al., 2007). However, the secondary industry uses more energy and 

produces more CO2 emissions than the primary and tertiary industries. The share of secondary output in the 

GDP in 2005 was 47.0%, while the industrial sector accounted for 41.6% of the GDP. Moreover, the 

consumption of TE in 2005 was 18.8×104 TCE, accounting for 71.9% of China's TE (NBS, 2019). Zhang (2015) 

and Guan et al. (2008) emphasized that a reasonable industrial structure accelerated economic resources 

distribution and promoted economic growth. Therefore, an advanced and appropriate industrial structure is 

pivotal for China's shift to the LE. 

Figure 4 shows the scatter distribution characteristics of the average ISA and LCE values of each of 

China's provinces. The whole panel divided China's 30 provinces into four sub-regions. Sub-region II contained 

five provinces (including Tianjin, Guangdong, Shanghai, Fujian, Zhejiang), which belonged to eastern China 

and were the most developed provinces in China. Interestingly, China's central and western provinces were 

distributed in Sub-region III, while only Beijing was distributed in the Sub-region I. 

Firstly, the average of ISA and LCE in Sub-region IV were 1.075 and 1.063, respectively. In comparison, 

the average of ISA and LCE in Sub-region I were higher than those of Sub-region IV, with the values of 1.2896 

and 3.8391, respectively. Most of the Sub-region II provinces are coastal provinces (i.e., Guangdong, Tianjin, 

Shanghai) with high openness levels and abundant natural resources. Traditional industrial sectors in these 

provinces have been thoroughly rearticulated. The technological sectors were not energy-intensive industries 

(Lee and Hashim, 2014), but they were characterised by low energy consumption and low environmental 

pollutions (''two-low''). These provinces still need to commit to vigorously implementing national policies and 

converting industries with high energy consumption to capital- and technologically-oriented industries to 

promote LCE further. A ''mismatching phenomenon'' was identified (i.e., provinces in Sub-region IV with high 

ISA levels but low LCE levels).  

Secondly, the average values of ISA and LCE in Sub-region III were 0.9473 and 0.3474, respectively. 

Sub-region III accounted for 65.77% of the total CO2 emissions and 78.16% of the total RGDP of China in 2005 

and 81.13% of total CO2 emissions, and 41.87% of the total RGDP in 2007. There was a noticeable increase in 

CO2 emissions and a significant decrease in the RGDP. Many heavy industries were located in Sub-region III, 

where the traditional northeast industrial zone was representative. The heavy industries, represented by steel 

and iron industries and cement industries could be regarded as the largest emitters of CO2 emissions (Du et al., 

2011). Most of them are characterised by high energy consumption and high pollutant emissions (''two-high''). 

Therefore, to effectively improve LCE, the local authorities should provide enough funds to gradually encourage 

these traditional industrial sectors to conduct R&D activities and overcome backward production capacity. 

Sequentially, two implicit influences can be derived. On the one hand, traditional industries can not only realise 

self-adjustment but also improve the quality of their products, thereby sizing the market share and improving 

competitiveness in the international market. On the other hand, heavy industries can mitigate CO2 emissions 

and sustain LCE growth (Liu and Gallagher, 2010). 
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Figure 4 Scatter distribution of the average ISA and LEE of each province 

 

Figure 5 shows the scatter distribution characteristics of the average ISA and LCE values for each 

province. Sub-region III included eight provinces from western China, excluding Shanxi, accounting for 63.64% 

of China's western provinces. Beijing was located in Sub-region I, while the other provinces were distributed in 

Sub-region IV. Table 11 further summarises the crucial information of Figure 5. Compared with ISA, the role 

of ISR was more crucial in stimulating provincial LCE growth. On the one hand, the goodness-of-fit in Figure 

5 was higher than that of Figure 4, indicating that the average change trend of ISR in most provinces was 

consistent with that of LCE during 2005-2017. On the other hand, region IV was adjacent to Sub-region I. The 

path from IV → I could be regarded as a successful trajectory because different features characterised each Sub-

region. For example, Hainan could step up to a new development stage by constantly rearticulating and its 

adjusting the industrial structure (Figure 5) to further improve its LCE further. 

 

Table 11 Summary table of Figure 5 

Sub-region Numbers LEE ISR 
CO2 emissions RGDP 

2005 2017 2005 2017 

I 7 1.0500 0.9528 0.2578 0.2275 0.4143 0.4077 

III 10 0.2326 0.7253 0.2402 0.2925 0.1359 0.1375 

IV 13 0.4097 0.8494 0.5020 0.4799 0.4305 0.4343 

Note: CO2 emissions (RGDP) denote the ratio of Sub-region average CO2 emissions (RGDP) to the total CO2 emissions (RGDP) of China 

 

Finally, provinces such as Shanxi, Inner Mongolia and Xinjiang were the major coal- producing 

provinces in China, and their economic activities were excessively dependent on the coal-based industry. These 

provinces should improve the coal industry and promote economic diversification on the way to the LCE. 

Following Liu et al. (2013), provinces can achieve energy- and emissions-intensity targets by upgrading 

equipment and industrial processes to use less energy and then to drive down CO2 emissions. What is more, 

expanding production scale, especially scale expansion, could contribute to China's improved energy intensity. 

Given the weak economic strength in Sub-region III (Figure 4 and Figure 5), those provinces should concentrate 

more on improving their socio-economic levels. A regional balanced development mechanism should be 

constructed to sustain LCE development. The central government should offer sufficient financial and technical 

support to encourage these provinces to conduct R&D activities. Besides, Appendix A reports the correspoding 

effects verification. 
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Figure 5 Scatter distribution of the average ISR and LCE of each province 

 

Robustness test 

The spatial weight matrix with the squared inverse distance was changed to verify the reliability of the derived 

results, which is expressed as follows: 

 

wij = {

0, i = j
1

dij
2 , i ≠ j (12) 

 

where dij represents the greater-circle distance, determined based on the longitude and latitude between 

provinces i and j. wij needs to be normalised to ensure that sum of each row is 1. 

According to Table 12, the effects of ISA and ISR on the LCE were statistically positive at the 1% 

significance level, highlighting that accelerating IA was conducive to promoting China's LCE. The coefficients 

of spatial ρ were significantly positive. Thus, it was feasible to nest the spatial elements into the regression. 

Furthermore, the spatial effect decomposition results showed that ISA and ISR positively contributed to the 

LCE in both local and adjacent areas. Therefore, our main conclusions were consistent with the former analyses, 

and the results were robust. 

 

Table 12 Results for robustness testing and effect decomposition 
ISA 0.118*** 0.368***     

 (4.85) (6.24)     
ISR    0.113*** 0.170***  

    (7.54) (4.25)  

Effect Dec. DE IE TE DE IE TE 

ISA 0.171*** 0.937*** 1.108***    
 (6.08) (5.11) (5.56)    

ISR    0.129*** 0.348*** 0.477*** 

    (8.79) (5.51) (7.42) 

Covariables Yes   Yes   

Spatial ρ 0.552***   0.401***   

 (8.02)   (4.95)   

Sigma2_e 0.046***   0.042***   

 (13.60)   (13.76)   
L-ratio test 37.385   61.158   

Adj R-

squared 

0.6196   0.7915   

Obs. 390   390   

Notes: *p<0.1, **p<0.05, ***p<0.01, t statistics in paratheses. Symbols ''DE'', ''IE'' and ''TE'' represent the direct, indirect and total effects, 

respectively. 
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CONCLUSIONS AND POLICY IMPLICATIONS 

 

This paper examined the effects of ISA on China's LCE. Correspondingly, a Super-SBM model with undesirable 

output was constructed to estimate the LCE of 30 selected provinces in China from 2005 to 2017. Sequentially, 

two indicators (ISA and ISR) used to measure IA were adopted to verify the ''promoting effect'' on China's LCE. 

Firstly, nationally, China's LCE index exhibited an ''U-shaped'' trend during the research period. The central 

government's policy (i.e., carbon pilot trading policy) exerted a specific impact on the national LCE 

improvement. However, the LCE levels among China's various provinces and four economic zones were highly 

unbalanced. In general, the LCE level of the eastern area was better than the other areas. 

Secondly, ISA and ISR positively affected the LCE in local and adjacent areas, indicating that 

rearticulating and upgrading industrial structure was crucial for China to develop the LE and improve the LCE 

further. Finally, for the comparative analysis of the LCE and IA (ISA and ISR) values, the whole panel divided 

China's 30 provinces into four Sub-regions. Beijing had the highest ISA, ISR and LCE values, which played a 

leading role in the process of LCE and IA. However, the central and western provinces were mainly distributed 

in Sub-region III and Sub-region IV. The development performance of the traditional northeast industrial zones 

concerning LCE and IA was not high quality because they were mainly located in Sub-region III. Fortunately, 

it was found that the ISR and LCE were better fitted, meaning that ISR was a pathway for most of China's 

provinces to achieve LCE. 

The following policy implications aim to aid provinces with low LCE pursue LE, thus improving high-

quality development. 

 

1. Policies that are beneficial to IA should be implemented decisively. By ISR, the government is 

suggested to adjust the ratio between various industrial sectors, prohibiting over-dependence on one or 

more industrial sectors. In addition, ISR should be considered as an effective path to reduce CO2 

emissions and improve LCE. The local governments in different regions should expedite regional 

industrial structure transformation and re-articulation, gradually eliminating outdated production 

capacity to reduce pollutant emissions and stimulate regional LCE growth. By ISA, government 

subsidies and policies should be in place to encourage and support technological innovation, thereby 

stimulating the growth of modern service industries and smart manufacturing. As for technological 

innovation, local authorities should support and encourage technological renovations in traditional 

heavy industrial sectors and replace backward equipment and techniques to reduce CO2 emissions. 

2. Accordingly, a regional balanced development mechanism should be constructed to provide external 

technical and financial support to Sub-region III provinces. This situation is because the spatial 

spillover effects of IA on LCE ask for more critical collaboration among regional governments. The 

Chinese central government should act as a coordinator to help them build and design suitable policies 

to accelerate LE development and facilitate IA, avoiding the potential risks of unbalanced and 

uncoordinated development among regional policies. 

3. Local governments and industrial firms should value the enhancement of LCE. Firms and local 

governments should abandon the development philosophy of ''pollution first, treatment later''. At the 

same time, the pertinent departments should establish and refine the negative list of market access 

systems to strictly restrict those ''two-high'' firms from entering the market. 

 

However, two points need to be further addressed. First, although this research was processed based on 

the previous studies, the lack of provincial capital stocks and CO2 emissions data may have cause biased 

estimations. Second, considering the data availability, the results cannot be compared with other developed 

economies such as OECD countries (the provincial LCE results would have relatively been much worse). This 

outcome leaves a research gap for our further exploration. 
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APPENDIX 

 

Appendix A Regional effect verification and effect's decomposition 

 Eastern region Central and Western regions 

 LCE LCE LCE LCE 

ISA 0.035  -0.079***  
 (0.73)  (-2.61)  

ISR  0.185***  0.132** 

  (5.57)  (2.19) 

W× ISA 0.425***  0.116  

 (4.74)  (1.47)  

W× ISR  0.236***  -0.644*** 

  (4.44)  (-3.47) 

Covariables Yes Yes Yes Yes 

Spatial ρ 0.294*** 0.023*** 0.332*** 0.402*** 

 (3.65) (0.27) (2.84) (3.67) 

sigma2_e 0.053*** 0.045*** 0.004*** 0.004*** 
 (9.08) (9.19) (10.40) (10.35) 

L-ratio test 6.027 22.029 287.158 289.967 

Direct effects of ISA and ISR on LCE 

ISA 0.084  -0.073**  

 (1.52)  (-2.23)  

ISR  0.188***  0.087 
  (5.66)  (1.28) 

Indirect effects of ISA and ISR on LCE 

ISA 0.583***  0.130  

 (4.21)  (1.13)  
ISR  0.246***  -0.959*** 

  (4.96)  (-2.63) 

Total effects of ISA and ISR on LCE 

ISA 0.667***  0.057  
 (3.66)  (0.43)  

ISR  0.434***  -0.872** 

  (8.48)  (-2.18) 
Obs. 169.000 169.000 221.000 221.000 

Adj R-

squared 

0.091 0.174 0.231 0.129 

Note: * p<0.1, ** p<0.05, *** p<0.01; t statistics in parentheses 


